# THIS FILE CONTAINS

# TWO DIMENSIONAL GEOMETRY

# (COLLECTION # 2)

Very Important Guessing Questions For IIT JEE 2011 With Detail Solution

## Junior Students Can Keep It Safe For Future IIT-JEEs

- Two Dimensional Geometry (2D) **→**
- The Point **>**
- Straight Lines
- **→ Circles**
- **Parabola**
- **Ellipse**
- Hyperbola

# **Index**

# For Collection # 1 Question (Page 2 to 39)

- Single Correct Answer Type Question **→**
- **→** Comprehension Type Questions
- **>** Assertion Reason Type Question
- **→** More Correct Answers Type Questions
- Subjective (Up to 4 Digits) **→**
- Detiail Solution By Genuine Method (But In) Classroom I Will Give **→ Short Tricks**)

# For Collection # 2 (Page 39 to 54)

Same As Above

| Single Correct Type |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |  |  |  |  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|
| Q. 1                | There are exactly two points on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ whose distance fi                                                                                                                                                                                                                                                                                                                                 | om the               |  |  |  |  |
|                     | centre of the ellipse are greatest and equal to $\sqrt{\frac{a^2+2b^2}{2}}$ . Eccentricity                                                                                                                                                                                                                                                                                                                                            | y of this            |  |  |  |  |
|                     | ellipse is equal to                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |  |  |  |  |
|                     | (A) $\frac{\sqrt{3}}{2}$ (B) $\frac{1}{\sqrt{3}}$ (C) $\frac{1}{\sqrt{2}}$                                                                                                                                                                                                                                                                                                                                                            | $\sqrt{\frac{2}{3}}$ |  |  |  |  |
| 0 0                 | (codeV3T1PAQ6)                                                                                                                                                                                                                                                                                                                                                                                                                        | _,2 .                |  |  |  |  |
| Q. 2                | Length of the latus rectum of the parabola $25[(x-2)^2+(y-3)^2]=(3x-4y-1)^2$                                                                                                                                                                                                                                                                                                                                                          |                      |  |  |  |  |
|                     | (A) 4 (B) 2 (C) 1/5 (codeV3T1PAQ7)                                                                                                                                                                                                                                                                                                                                                                                                    | O) 2/5               |  |  |  |  |
| Q. 3                | If the eccentricity of the hyperbola $x^2 - y^2 \sec^2 \alpha = 5$ is $\sqrt{3}$ times the eccentrici ellipse $x^2 \sec^2 \alpha + y^2 = 25$ , then a value of $\alpha$ is (codeV3T2PAQ1)                                                                                                                                                                                                                                             | ty of the            |  |  |  |  |
| Q. 4                | <ul> <li>(A) π/6</li> <li>(B) π/3</li> <li>(C) π/2</li> <li>(D) π/4</li> <li>Each member of the family of parabolas y = ax² + 2x + 3 has a maximular minimum point depending upon the value of a. The equation to the loculous maxima or minima for all possible values of 'a' is (codeV3T2PAQ4)</li> <li>(A) a straight line with slope 1 and y intercept 3.</li> <li>(B) a straight line with slope 2 and y intercept 2.</li> </ul> |                      |  |  |  |  |
|                     | (C) a straight line with slope 1 and x intercept 3. (D) a circle                                                                                                                                                                                                                                                                                                                                                                      |                      |  |  |  |  |
| Q. 5                | The acute angle at which the line $y=3x-1$ intersects the circle $(x-2)^2+y^2=5$ (A) 30° (B) 45° (C) 60° (D) 75° (codeV3T2PAQ5)                                                                                                                                                                                                                                                                                                       | is                   |  |  |  |  |
| Q. 6                | Let ABC be a triangle with $\angle BAC = \frac{2\pi}{3}$ and $AB = x$ such that $(AB)(AC) = 1$ . If                                                                                                                                                                                                                                                                                                                                   | x varies             |  |  |  |  |
|                     | then the longest possible length of the angle bisector AD (codeV3T2PAQ7) (A) $1/3$ (B) $1/2$ (C) $2/3$ (D) $3/2$ If $x^2 + y^2 = c^2 (c \neq 0)$ then the least value of $x^4 + y^4$ is equal to                                                                                                                                                                                                                                      |                      |  |  |  |  |
| Q. 1                | (codeV3T2PAQ8)                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |  |  |  |  |
|                     | (A) $\frac{c^4}{4}$ (B) $\frac{c^4}{2}$ (C) $\frac{3c^4}{4}$                                                                                                                                                                                                                                                                                                                                                                          |                      |  |  |  |  |
| Q. 8<br>(cod        | The area enclosed by the parabola $y^2 = 12x$ and its latus red leV3T3PAQ1) (A) 36 (B) 24 (C) 18 (D) 12                                                                                                                                                                                                                                                                                                                               |                      |  |  |  |  |
| Q. 9                | Three distinct point $P(3u^2, 2u^3)$ ; $Q(3v^2, 2v^3)$ and $R(3w^2, 2w^3)$ are colline                                                                                                                                                                                                                                                                                                                                                | ear then             |  |  |  |  |
| Q. 10               | (codeV3T3PAQ5) (A) $uv+vw+wu=0$ (B) $uv+vw+wu=3$ (C) $uv+vw+wu=2$ (D) $uv+vw+wu=1$ ) At the end points A, B of the fixed segment of length L, line are drawn me C and making angles $\theta$ and $2\theta$ respectively with the given segment. Let E foot of the altitude CD and let x represents the length of AD. The value of tends to zero i.e. $\lim_{\theta \to 0} x$ equals (codeV3T4PAQ3)                                    | be the               |  |  |  |  |
|                     | (A) $\frac{L}{2}$ (B) $\frac{2L}{3}$ (C) $\frac{3L}{4}$                                                                                                                                                                                                                                                                                                                                                                               |                      |  |  |  |  |

 $\label{thm:condition} \textbf{THE "BOND"} \ | \ | \ Phy. \ by \ Chitranjan \ | \ | \ | \ Chem. \ by \ Pavan \ Gubrele \ | \ | \ | \ Maths \ by \ Suhaag \ Kariya \ | \ | \ | \ Maths \ Davan \ Gubrele \ | \ | \ | \ Maths \ Davan \ Gubrele \ | \ | \ | \ Maths \ Davan \ Gubrele \ | \ | \ | \ Maths \ Davan \ Gubrele \ | \ | \ | \ Maths \ Davan \ Gubrele \ | \ | \ | \ Maths \ Davan \ Gubrele \ | \ | \ | \ Maths \ Davan \ Gubrele \ | \ | \ | \ Maths \ Davan \ Gubrele \ | \ | \ | \ Maths \ Davan \ Gubrele \ | \ | \ | \ Maths \ Davan \ Gubrele \ | \ | \ | \ Maths \ Davan \ Gubrele \ | \ | \ | \ Maths \ Davan \ Gubrele \ | \ | \ | \ Maths \ Davan \ Gubrele \ | \ | \ | \ Maths \ Davan \ Gubrele \ | \ | \ | \ Maths \ Davan \ Gubrele \ | \ | \ | \ Maths \ Davan \ Gubrele \ | \ | \ | \ Maths \ Davan \ Gubrele \ | \ | \ | \ Maths \ Davan \ Gubrele \ | \ | \ Maths \ Davan \ Gubrele \ | \ | \ Maths \ Davan \ Gubrele \ | \ | \ Maths \ Gubrele \ | \ Maths \ Gubrele \ | \ | \ Maths \ Gubrele \ | \$ 

| Q. 1   |                                                                                                                                                      | e integral values of                              | 'a' for which the curve y                                        | $y = a^x$ intersects the    |  |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------|-----------------------------|--|--|
|        | line $y = x$ is  (A) 0                                                                                                                               | (B) 1 (C) 2                                       | (D)More than                                                     | 2                           |  |  |
| ດ 1'   | codeV3T4PAQ;<br>The area enclose                                                                                                                     | ,                                                 | $=\sqrt{x} \& x = -\sqrt{y}$ , the circle                        | $x^{2} + y^{2} = 2$ above   |  |  |
|        | c-axis, is                                                                                                                                           | 54 by 1110 corve y-                               | $-\sqrt{x} \propto x - \sqrt{y}$ , The check                     | 7 x 1 y = 2 GBOVO           |  |  |
| 1110 / |                                                                                                                                                      | $3\pi$                                            | $\pi$                                                            |                             |  |  |
|        | $(A) - \frac{1}{4}$                                                                                                                                  | $\frac{3\pi}{2}$ (C) $\pi$                        | $(D)\frac{1}{2}$                                                 |                             |  |  |
|        |                                                                                                                                                      | (codeV3T4PA                                       | •                                                                | _                           |  |  |
| Q. 13  | 3 From the point (                                                                                                                                   | (-1, 2) tangent line                              | are drawn to the pare                                            | abola $y^2 = 4x$ . The      |  |  |
|        | _                                                                                                                                                    | gle formed by the c<br>eV3T5PAQ1)                 | hord of contact and the                                          | e tangents is               |  |  |
|        | (A) $4\sqrt{2}$                                                                                                                                      | (B) 4                                             | (C) 8                                                            | (D) $8\sqrt{2}$             |  |  |
| Q. 14  | 4 The equation to t                                                                                                                                  | the locus of the mic                              | Idle point of the portion                                        | of the tangent to           |  |  |
|        | the ellipse $\frac{x^2}{16} + \frac{y^2}{9}$                                                                                                         | $\frac{1}{1}$ =1 included betw                    | veen the co-ordinate a                                           | xes is the curve :          |  |  |
|        | (codeV3T5PAQ2)                                                                                                                                       |                                                   |                                                                  |                             |  |  |
|        | (A) $9x^2 + 16y^2 = 4x^2$                                                                                                                            | $y^2$ (B) $16x^2 + 9y^2 = 4x^2y$                  | $y^2$ (C) $3x^2 + 4y^2 = 4x^2y^2$ (D                             | $9x^2 + 16y^2 = x^2y^2$     |  |  |
| Q. 1   | 5 Let P be a variak                                                                                                                                  | ole point on the elli                             | pse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b)$ with         | foci $F_1 \& F_2$ . If A is |  |  |
|        | the area of the tr                                                                                                                                   | iangle $PF_1F_2$ , then th                        | ne maximum value of A                                            | is                          |  |  |
|        | (codeV3T5I                                                                                                                                           | PAQ4)                                             |                                                                  |                             |  |  |
|        | (A) $a\sqrt{a^2-b^2}$                                                                                                                                | (B) $b\sqrt{a^2-b^2}$                             | (C) $2b\sqrt{a^2-b^2}$                                           | (D) ab                      |  |  |
| Q. 1   | 6 All points on the                                                                                                                                  | CURVE $y^2 = 4a \left( x + a \sin \theta \right)$ | (C) $2b\sqrt{a^2-b^2}$ at which the tanger                       | nt t is parallel to x-      |  |  |
|        | axis lie on                                                                                                                                          |                                                   | <b>"</b> )                                                       |                             |  |  |
|        |                                                                                                                                                      | a parabola (codeV3T5PA                            |                                                                  | (D) a line                  |  |  |
| Q. 17  | 7 The number of                                                                                                                                      | •                                                 | •                                                                | n to the curve              |  |  |
|        | Q. 17 The number of possible tangents which can be drawn to the curve $4x^2-9y^2=36$ , which are perpendicular to the straight line $5x+2y-10=0$ is: |                                                   |                                                                  |                             |  |  |
|        | •                                                                                                                                                    | (codeV3T5PAQ6)                                    | _                                                                |                             |  |  |
|        | (A) zero                                                                                                                                             | (B) 1 (C                                          | C) 2 (D) 4                                                       |                             |  |  |
| Q. 18  | 3 Let $_{S\equiv (3,4)}$ and $_{S'\equiv}$                                                                                                           | (9,12) be two foci of $(9,12)$                    | an ellipse. If the coordinate                                    | es of the foot of the       |  |  |
|        | perpendicular forn                                                                                                                                   | n focus S to a tanger                             | nt of the ellipse is $(1,-4)$ the                                | en the eccentricity of      |  |  |
|        | the ellipse is                                                                                                                                       |                                                   |                                                                  |                             |  |  |
|        | (A) $\frac{5}{}$ (B) $\frac{4}{}$                                                                                                                    | (C) $\frac{5}{7}$                                 | (D) $\frac{7}{}$                                                 |                             |  |  |
|        | 13 5                                                                                                                                                 | ,                                                 | 13                                                               |                             |  |  |
| O 19   | ) The straight line ic                                                                                                                               | (codeV3T5PA)                                      | n the parabola $y^2 = 4ax$                                       | to the vertex and           |  |  |
| Q. 17  |                                                                                                                                                      |                                                   | ngent at P, intersect at R, th                                   |                             |  |  |
|        |                                                                                                                                                      | (codeV3T5PAQ9)                                    | igeni ari , intersect ark, ir                                    | len ine equalion of         |  |  |
|        | (A) $x^2 + 2y^2 - ax = 0$                                                                                                                            | (B) $2x^2 + y^2 - 2ax = 0$                        | (C) $2x^2 + y^2 - ay = 0$ (D) 2                                  | $2x^2 + y^2 - 2ay = 0$      |  |  |
| Q. 20  |                                                                                                                                                      | •                                                 | vertices at the foci of the $5x^2 + 9y^2 - 50x - 18y + 33 = 0$ , |                             |  |  |
|        | (codeV3T5I                                                                                                                                           |                                                   | - 17 July 100 0,                                                 |                             |  |  |
|        | (A) 5/6                                                                                                                                              | (B) 8/9                                           | (C) 5/3                                                          | (D) 16/9                    |  |  |

(A)  $\frac{1}{\epsilon}$ (B)  $\frac{1}{4}$ (C)  $\frac{1}{3}$ (D)  $\frac{1}{2}$ 

cm in a straight line to C. The probability that AC<7 is: (codeV3T8PAQ3)

### **Comprehesion Type**

### # 1 Paragraph for Q. 1 to Q. 3

Consider a line L: 2x + y = 1 and the points A(1, 3/2) and B(4, 5). P is a point on the line L.

Q. 1 The abscissa of the point P for which the area of the  $\Delta PAB$  is unity (Given P does not lie on the y-axis) is

(codeV3T2PAQ9)

(A) 
$$\frac{4}{19}$$

(B) 
$$\frac{6}{19}$$

(C) 
$$\frac{8}{19}$$

(D) None

Q. 2 A circle passes through A and B and has its centre on the x-axis. The x-coordinate of the centre is

(A) 
$$\frac{151}{24}$$

(B) 
$$\frac{155}{7}$$

(codeV3T2PAQ10)

Q. 3 If C is some point on L then the minimum distance (AC+BC) is (codeV3T2PAQ11)

(B) 
$$\sqrt{\frac{181}{2}}$$

(C) 
$$\frac{\sqrt{181}}{4}$$

(D) 
$$\frac{\sqrt{181}}{2}$$

#2 Paragraph for Q. 4 to Q. 6

Consider the lines represented parametrically as

$$L_1: \qquad x=1-2t;$$

$$y = t$$
;

$$z = -1 + t$$

$$L_2: x = 4 + x;$$

$$y = 5 + 4s;$$

$$z = -2 - s$$

Find

acute angle between the line  $L_1$  and  $L_2$ , is

(codeV3T3PAQ14)

(A) 
$$\cos^{-1} \left( \frac{1}{18} \right)$$

(B) 
$$\cos^{-1} \left( \frac{1}{3\sqrt{6}} \right)$$

(A) 
$$\cos^{-1}\left(\frac{1}{18}\right)$$
 (B)  $\cos^{-1}\left(\frac{1}{3\sqrt{6}}\right)$  (C)  $\cos^{-1}\left(\frac{1}{6\sqrt{3}}\right)$  (D)  $\cos^{-1}\left(\frac{1}{3\sqrt{2}}\right)$ 

(D) 
$$\cos^{-1}\left(\frac{1}{3\sqrt{2}}\right)$$

equation of a plane P containing the line  $L_1$  and parallel to the line  $L_1$ , is (codeV3T3PAQ15)

(A) 
$$5x + y + 9z - 7 = 0$$
 (B)  $2x - 3y + 4z - 15 = 0$  (C)  $5x - y + 9z + 3 = 0$  (D)  $9x - 5y - z - 13 = 0$ 

Q. 6 distance between the plane P and the line  $L_1$  is (codeV3T3PAQ16)

(A) 
$$\frac{17}{\sqrt{29}}$$

(B) 
$$\frac{3}{\sqrt{87}}$$

(C) 
$$\frac{11}{\sqrt{107}}$$

(C) 
$$\frac{11}{\sqrt{107}}$$
 (D)  $\frac{1}{\sqrt{107}}$ 

#3 Paragraph for Q. 7 to Q. 9

Consider the circles

$$S_1: x^2 + y^2 - 6y + 5 = 0;$$
  $S_2: x^2 + y^2 - 12y + 35 = 0$ 

And a variable circle  $S: x^2 + y^2 + 2gx + 2fy + c = 0$ 

Q. 7 Number of common tangents to  $S_1$  and  $S_2$  is (codeV3T5PAQ19)

(A) 1

(B) 2

(D) 4

Q. 8 Length of a transverse common tangent to  $S_1$  and  $S_2$  is

(codeV3T5PAQ20)

(A) 6

(B)  $2\sqrt{11}$ 

(C)  $\sqrt{35}$ 

(D)  $11\sqrt{2}$ 

If the variable circle S = 0 with centre C moves in such a way that it is always touching externally the circles  $S_1 = 0$  and  $S_2 = 0$  then the locus of the centre C of the variable circle is

(A) a circle

(B) a parabola (codeV3T5PAQ21)

(C) an ellipse

(D) a hyperbola

#4 Paragraph for Q. 10 to Q. 12

From the point P(h, k) three normals are drawn to the parabola  $x^2 = 8y$  and  $m_1$ ,  $m_2$  and  $m_3$  are the slopes of three normals

|                                                                                                    | Algebraic sum of the s<br>eV3T5PAQ22)                         |                                         |                  |                                                                            |         |                                         |   |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------|------------------|----------------------------------------------------------------------------|---------|-----------------------------------------|---|
|                                                                                                    | (A) zero                                                      | (B) $\frac{k-4}{h}$                     |                  | (C) $\frac{k-2}{h}$                                                        |         | (D) $\frac{2-k}{h}$                     |   |
|                                                                                                    | If two of the three normal latus rectum is (A) 1 (B) 2        | _                                       |                  | en the locus c                                                             | f point | P is a conic whose                      | ) |
|                                                                                                    | (codeV3T5PAQ23)                                               | (-)-                                    | (- )             |                                                                            |         |                                         |   |
|                                                                                                    | If the two normals fro<br>with the axis then the<br>(codeV3T5 | ocus of point                           |                  | •                                                                          | •       | , •                                     | 3 |
|                                                                                                    | (A) $2y-3=0$                                                  | (B) $2y + 3 = 0$                        |                  | (C) $2y-5=0$                                                               |         | (D) $2y + 5 = 0$                        |   |
|                                                                                                    |                                                               | # 5 Paragraph f                         | _                | _                                                                          |         | - 1                                     |   |
|                                                                                                    | A conic C satisfies t                                         |                                         |                  | ,                                                                          |         |                                         |   |
|                                                                                                    | through the point (1,                                         | <u>·</u>                                | e E wh           | ich is conto                                                               | cal w   | vith C having its                       | S |
|                                                                                                    | eccentricity equal to                                         |                                         |                  |                                                                            |         |                                         |   |
| Q. 13                                                                                              | Length of the latus rec (codeV3T5PAQ25)                       | tumot the co                            | nic C, i         | 5                                                                          |         |                                         |   |
|                                                                                                    | (A) 1                                                         | (B) 2                                   |                  | (C) 3                                                                      |         | (D) 4                                   |   |
|                                                                                                    | Equation of the ellipse (codeV3T5PAQ26)                       |                                         |                  |                                                                            |         |                                         |   |
|                                                                                                    | (A) $\frac{x^2}{3} + \frac{y^2}{1} = 1$                       | (B) $\frac{x^2}{1} + \frac{y^2}{3} = 1$ |                  | (C) $\frac{x^2}{4} + \frac{y^2}{9} =$                                      | 1       | (D) $\frac{x^2}{9} + \frac{y^2}{4} = 1$ |   |
|                                                                                                    | Locus of the point of in V3T5PAQ27)                           | tersection of t                         | he perp          | endicular tar                                                              | ngents  | to the ellipse E, is                    | S |
| •                                                                                                  | •                                                             | (B) $x^2 + y^2 = 10$                    |                  | (C) $x^2 + y^2 = 8$                                                        | }       | (D) $x^2 + y^2 = 13$                    |   |
|                                                                                                    |                                                               | # 6 Paragraph f                         | _                | _                                                                          |         |                                         |   |
|                                                                                                    | Two equal parabola                                            |                                         |                  |                                                                            |         |                                         |   |
|                                                                                                    | respectively. $P_1$ and $P_2$                                 | g are tangent                           | to ead           | ch other and                                                               | d have  | e vertical axes o                       | t |
| symmetry.  Q. 16 The sum of the abscissa and ordinate of their point of contact is (codeV3T5PAQ28) |                                                               |                                         |                  |                                                                            |         |                                         |   |
| •                                                                                                  | (A) 4                                                         | (B) 5                                   |                  | (C) 6                                                                      |         | (D) 7                                   |   |
|                                                                                                    | Length of latus rectus eV3T5PAQ29)                            |                                         |                  |                                                                            |         |                                         |   |
|                                                                                                    | (A) 6                                                         | (B) 5                                   |                  | (C) 9/2                                                                    |         | (D) 4                                   |   |
| Q. 18 Area of the region enclosed by $P_1$ , $P_2$ and the x-axis is (codeV3T5PAQ30)               |                                                               |                                         |                  |                                                                            |         |                                         |   |
| -                                                                                                  | (A) 1                                                         | (B) $4-2\sqrt{2}$                       |                  | (C) $3-\sqrt{2}$                                                           |         | (D) $4(3-2\sqrt{2})$                    |   |
|                                                                                                    | i                                                             | # 7 Paragraph f                         | or <b>Q</b> . 19 | to Q. 21                                                                   |         | ,                                       |   |
|                                                                                                    | Four A, B, C and D in of A, B and D are $(-2, 3)$             | rder lie on the <sub>l</sub>            | parabola         | $\mathbf{a}  \mathbf{y} = \mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} +$ | c and   | the coordinates                         | S |
|                                                                                                    | (a+b+c) has the value                                         |                                         | ` '              | •                                                                          |         |                                         |   |
|                                                                                                    | eV3T8PAQ14)                                                   | •                                       |                  |                                                                            |         |                                         |   |
| •                                                                                                  | (A) 1                                                         | (B) 2                                   |                  | (C) 3                                                                      |         | (D) 4                                   |   |

|                                                                                                                                                         |                                                                                                                                                                                                         |                                                    |                                |            |                   |                              |                               | - 0 -   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------|------------|-------------------|------------------------------|-------------------------------|---------|
| Q. 20 If roots of the equation $ax^2+bx+c=0$ and $\alpha$ are $\beta$ then the equation whose roots are $\alpha^{2009}$ and $\beta^{2009}$ is           |                                                                                                                                                                                                         |                                                    |                                |            |                   |                              |                               |         |
|                                                                                                                                                         | deV3T8I                                                                                                                                                                                                 | •                                                  |                                |            |                   |                              |                               |         |
| (A)                                                                                                                                                     | $x^2 - x + 1$                                                                                                                                                                                           | =0                                                 | (B) $x^2 + x +$                | 1 = 0      | (C) $x^2 - $      | 2x + 3 = 0                   | (D) $x^2 - 2x + \frac{1}{2}$  | -3 = 0  |
|                                                                                                                                                         |                                                                                                                                                                                                         |                                                    |                                | BCD is gre | eatest, t         | hen the su                   | ım of the ab                  | scissa  |
| and                                                                                                                                                     | d ordina                                                                                                                                                                                                | te of the p                                        |                                |            |                   |                              |                               |         |
|                                                                                                                                                         | 9                                                                                                                                                                                                       |                                                    | (codeV3T                       |            | , s. 5            |                              | ,_ , 11                       |         |
| (A)                                                                                                                                                     | $\frac{1}{4}$                                                                                                                                                                                           |                                                    | (B) $\frac{7}{4}$              |            | (C) $\frac{1}{4}$ |                              | (D) $\frac{11}{4}$            |         |
|                                                                                                                                                         |                                                                                                                                                                                                         |                                                    | # 8 Paragra                    |            | _                 |                              |                               |         |
|                                                                                                                                                         |                                                                                                                                                                                                         |                                                    |                                |            |                   |                              | ng perpend                    |         |
|                                                                                                                                                         |                                                                                                                                                                                                         | _                                                  |                                |            | _                 | _                            | C with the x-                 |         |
|                                                                                                                                                         | -                                                                                                                                                                                                       | =                                                  |                                |            | -                 | na y <sub>2</sub> are        | the intercep                  | ots on  |
|                                                                                                                                                         |                                                                                                                                                                                                         | , -                                                | $+x_2 + y_1 + y_2$             | is equal t | 0                 |                              |                               |         |
|                                                                                                                                                         | deV3T8I                                                                                                                                                                                                 | PAQ1/)                                             | (D) E                          |            | (C) 1             |                              | (D) 3                         |         |
| (A)<br>O 23 Dist                                                                                                                                        |                                                                                                                                                                                                         | etween th                                          |                                |            |                   |                              | (D) 3<br>ne triangle <i>A</i> | .R⊂ is  |
| (codeV3                                                                                                                                                 |                                                                                                                                                                                                         |                                                    | ic officeeri                   | ici dila ( |                   |                              | ic mangic 7                   | (DC 13  |
| (A)                                                                                                                                                     |                                                                                                                                                                                                         | •                                                  | (B) 3                          |            | (C) 7/4           |                              | (D) 9/4                       |         |
| Q. 24 If th                                                                                                                                             | ne circle                                                                                                                                                                                               | $x^2 + y^2 - 4y - 4$ | +k=0 is orthogonal             | ogonal wit | th the cir        | cumcircle                    | of the triangle               | e ABC   |
| then 'k' e                                                                                                                                              | •                                                                                                                                                                                                       |                                                    |                                |            |                   |                              |                               |         |
| (A)                                                                                                                                                     | 1/2                                                                                                                                                                                                     | (B) 1                                              | (C) 2                          |            | 2                 |                              |                               |         |
|                                                                                                                                                         |                                                                                                                                                                                                         |                                                    | (codeV3Ta # 9 Paragrap         | ,          | 5 to Ω 27         | 1                            |                               |         |
| Tan                                                                                                                                                     | naent is di                                                                                                                                                                                             | rawn at the                                        |                                |            |                   |                              | n intersects the              | x-axis  |
|                                                                                                                                                         | Tangent is drawn at the point $(x_i, y_i)$ on the curve $y = f(x)$ , which intersects the x-axis at $(x_{i+1}, 0)$ . Now again a tangent is drawn at $(x_{i+1}, y_{i+1})$ on the curve which intersects |                                                    |                                |            |                   |                              |                               |         |
| the x-axis at $(x_{i+1}, 0)$ and the process is reputed in times i.e., $I = 1, 2, 3, \ldots, n$ .                                                       |                                                                                                                                                                                                         |                                                    |                                |            |                   |                              |                               |         |
|                                                                                                                                                         |                                                                                                                                                                                                         |                                                    |                                |            |                   |                              | progression                   |         |
|                                                                                                                                                         |                                                                                                                                                                                                         |                                                    |                                |            |                   |                              | hrough $(0,2)$                |         |
|                                                                                                                                                         |                                                                                                                                                                                                         |                                                    |                                |            |                   |                              |                               | , IIIC  |
| (A)                                                                                                                                                     | $v = 2e^x$                                                                                                                                                                                              | (B)                                                | $\Rightarrow is$ $y = 2e^{-x}$ | (C)        | $v = 2^{1+x}$     | 3171 AQ12<br>)               | D) $v = 2^{1-x}$              |         |
|                                                                                                                                                         |                                                                                                                                                                                                         |                                                    |                                |            |                   |                              |                               | al to 2 |
| Q. 26 If $x_1$ , $x_2$ , $x_3$ ,, $x_n$ form a geometric progression with common ratio equal to 2 and the curve passes though (1, 2), then the curve is |                                                                                                                                                                                                         |                                                    |                                |            |                   |                              |                               |         |
|                                                                                                                                                         | deV3T9I                                                                                                                                                                                                 |                                                    | <b>O</b> ( )                   | , .        |                   |                              |                               |         |
| •                                                                                                                                                       | a parak                                                                                                                                                                                                 | ,                                                  |                                | (B)        | an ellips         | se .                         |                               |         |
|                                                                                                                                                         |                                                                                                                                                                                                         |                                                    | perbola                        |            |                   |                              | is not rectan                 | _       |
| Q. 27 The radius of the circle touching the curve obtained in question no26 at                                                                          |                                                                                                                                                                                                         |                                                    |                                |            |                   |                              |                               |         |
| (1, 2) and passing through the point $(1, 0)$ is                                                                                                        |                                                                                                                                                                                                         |                                                    |                                |            |                   |                              |                               |         |
| (                                                                                                                                                       | ( <del>-</del>                                                                                                                                                                                          | (codeV3T                                           | 9PAQ14)                        | (0)        | <i>[</i> 2        | ,                            | D) [6                         |         |
| (A)                                                                                                                                                     | √5                                                                                                                                                                                                      |                                                    | $\sqrt{4}$ # 10 Paragra        |            |                   |                              | D) $\sqrt{13}$                |         |
|                                                                                                                                                         |                                                                                                                                                                                                         |                                                    |                                |            |                   |                              |                               |         |
| Со                                                                                                                                                      | nsider                                                                                                                                                                                                  | the two                                            | quadratic                      | polynor    | nials             | $C_a: y = \frac{\Lambda}{4}$ | $-ax + a^2 + a - 2$           | and     |
| C: y                                                                                                                                                    | $y = 2 - \frac{x^2}{4}$                                                                                                                                                                                 |                                                    |                                |            |                   | ·                            |                               |         |
|                                                                                                                                                         |                                                                                                                                                                                                         |                                                    |                                |            |                   |                              |                               |         |

| Q.28 It the origin lies between                      | the zeroes of the polyr         | nomial $C_a$ then the              | number of      |
|------------------------------------------------------|---------------------------------|------------------------------------|----------------|
| ntegral value(s) of 'a' is                           |                                 |                                    |                |
| (A) 1 (B) 2 (C) 3                                    | (D) more than 3                 |                                    |                |
| (codeV3T10PAQ9)                                      |                                 |                                    |                |
| Q. 29 If 'a' varies then the equa                    | ation of the locus of the       | $\Rightarrow$ vertex of $C_a$ , is |                |
| (codeV3T10PAQ10)                                     |                                 |                                    |                |
| (A) $x-2y-4=0$ (B) $2x-$                             | -y-4=0 (C) $x-2y-1$             | +4=0 		 (D)                        | 2x + y - 4 = 0 |
| Q. 30 For $a = 3$ , if the lines $y = m$             |                                 |                                    |                |
| graph of $C_a$ and $C$ then t                        |                                 |                                    |                |
|                                                      |                                 | oqual 10                           |                |
| (codeV3T10PAQ11)<br>(A) - 6 (B) - 3                  | (C) 1/2                         | (D) non(                           |                |
| ` ,                                                  | Paragraph for Q. 31 to Q.       | (D) none                           | <i>3</i>       |
| Two fixed points A and E                             |                                 |                                    | e side of a    |
| moving line L. If perpendi                           |                                 |                                    |                |
| L are such that $P_1 + 3P_2 = k$ ,                   |                                 |                                    |                |
| a fixed circle C.                                    | it boiling a containing in      | 1011 1110 11110 12 0111101         | ,              |
| Q. 31 The centre of the circle C                     | lies on                         |                                    |                |
| (codeV3T10PAQ12)                                     | 1103 011                        |                                    |                |
| (A) line segment joining A                           | .R (R) perpe                    | endicular bisector o               | f AR           |
| (C) one of A or B                                    |                                 | ng definite can be                 |                |
| (3) 33 3 3                                           | (= /                            |                                    | <b>3 3 3</b> . |
| Q. 32 If $k = 4$ then the radius of the              | he circle is                    |                                    |                |
| (codeV3T10PAQ13)                                     |                                 |                                    |                |
| (A) 1 (B) 2                                          | (C) 4                           | (D) 8                              |                |
| Q. 33 If A and B are $(-2, 0), (2, 0)$               | respectively, then the a        | centre of the circle               | C is           |
|                                                      |                                 |                                    |                |
| (A) $(0,1)$ (B) $(1,0)$ (C) $(3/2,0)$                | (D) can not be found            |                                    |                |
|                                                      | V3T10PAQ14)                     |                                    |                |
| ·                                                    | Assertion & Reason Type         |                                    |                |
| In this section each que. conta                      | ins STATEMENT-1 (Asse           | ertion) & STATEMEN                 | T-2(Reason).   |
| Each question has 4 choices (A                       | A), (B), (C) and (D), out of v  | which only one is corr             | ect.           |
| Bubble (A) STATEMENT-1                               |                                 | -2 is True; STATEM                 | IENT-2 is a    |
| correct explanation for STATE Bubble (B) STATEMENT-1 | is True, STATEMENT-2            | ic True: STATEMENT                 | Γ 2 is NOT a   |
| correct explanation for STATE                        |                                 | is fluc, STATEMENT                 | 1-2 IS NOT a   |
| Bubble (C) STATEMENT-1                               |                                 | s False.                           |                |
| Bubble (D) STATEMENT-1                               | is False, STATEMENT-2           | is True.                           |                |
| Q. 1 Consider an expression                          | $f(h,k) = h^2 + 3k^2 - 2hk$ whe | re h and k are notenous            | n zero real    |
| numbers.                                             |                                 |                                    |                |
| <b>Statement-1:</b> $f(h,k)$ is                      | always positive∀ nor            | n zero and real                    | h and $k$ .    |
| (codeV3T1PAQ16)                                      |                                 |                                    |                |
| <b>Statement-2</b> : A quadrati                      | c expression $ax^2 + bx + c$    | is always positive if              | f'(a') > 0 and |
| $b^2$ $Aaa < 0$                                      |                                 |                                    |                |

the

(codeV3T3PAQ8)

Statement-1:

AB

Q. 2 Let C be a circle with centre 'O' and HK is the chord of contact of pair of the tangents from point A. OA intersects the circle C at P and Q and B is the midpoint of HK, then

harmonic

of AP

mean

and

Statement-2: AK is the Geometric mean of AB & AO and OA is the arithmetic mean of AP and AQ.

Q. 3 **Statement-1:** The cuves  $y^2 = x$  and  $x^2 = y$  are not orthogonal.

Statement-2: The angle of intersection between then at their point of intersection other than origin is  $tan^{-1}(1)$ .

(codeV3T4PAQ13)

Q. 4 Consider the curve C:  $y^2 = 3 + 2x - x^2$ 

**Statement-1**: The tangent to C at its point P(3,0) and at its point Q(-1,0) is parallel to y-axis.

point P(3, 0) and Q(-1, 0)  $\frac{dy}{dx} \rightarrow \infty$ Statement -2 At the (codeV3T8PAQ10)

Q. 5 Consider a triangle whose vertices are A(-2, 1), B(1, 3) and C(3x, 2x-3) where x is a real number.

**Statement-1**: The area of the triangle ABC is independent of x (codeV3T10PAQ17)

Statement - 2: The vertex C of the triangle ABC always moves on a line parallel to the base AB.

### **More than One Correct Type**

- Q. 1 Suppose f(x, y) = 0 is circle such that the equation f(x, 0) = 0 has coincident root equal to 1, and the equation f(0, y) = 0 also has coincident roots equal to 1. Also, g(x, y) = 0 is a circle centred at (0, -1) and tangent to the circle f(x, y) = 0. The possible radii of the circle is (codeV3T1PA19) (B) 2 cos 15° (C) 4 sin 18°
- (A) 4 sin 15° (D) 4 cos 36° Equation of a straight line on the complex plane passing through a point P denoting the complex number  $\alpha$  and perpendicular to the vector  $\overrightarrow{OP}$  where 'O' in the origin can be written as (codeV3T3PAQ22)

(A) 
$$lm\left(\frac{z-\alpha}{\alpha}\right) = 0$$
 (B)  $Re\left(\frac{z-\alpha}{\alpha}\right) = 0$  (C)  $Re\left(\vec{\alpha} Z\right) = 0$  (D)  $\vec{\alpha}z + \alpha \vec{z} - 2|\alpha|^2 = 0$ 

Q. 1 Consider the conic  $C_1$ :  $x^2 - 3y + 2x + 3 = 0$   $C_2$ :  $4x^2 + y^2 - 16x + 6y + 21 = 0$ 

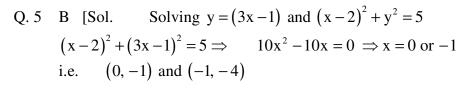
Column-II (codeV3T2PBQ1)  $x^2 - 4y^2 - 2x - 32y - 127 = 0$ Column-I (P) 4 (A) Length of the latus rectum of  $C_1$ (Q) 3. (B) Length of the latus rectum of  $C_2$ (R) 2.

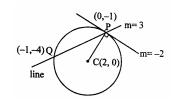
(C) Length of the latus rectum of  $C_3$ (S) 1.

## **SOLUTION (COLLECTION # 2)**

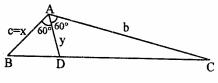
## **Single Correct Type**

[Sol. The given distance is clearly the length of semi major axis Q. 1


Thus, 
$$\sqrt{\frac{a^2 + 2b^2}{2}} = a$$
  $\Rightarrow 2b^2 = a^2 \Rightarrow 2a^2(1 - e^2) = a^2 \Rightarrow e^2 = \frac{1}{2} \Rightarrow e = \frac{1}{\sqrt{2}}$ 


- Q. 2 [Hint: Note that focus is (2,3) and directrix is 3x - 4y + 7 = 0 and distance from S to directrix is half the latus rectum]
- [Sol.  $\frac{x^2}{5} \frac{y^2}{5\cos^2\alpha} = 1$   $e_1^2 = 1 + \frac{b^2}{a^2} = 1 + \frac{5\cos^2\alpha}{5} = 1 + \cos^2\alpha$ ; Q. 3 Illy eccentricity of the ellipse

$$\frac{x^2}{25\cos^2\alpha} + \frac{y^2}{25} = 1 \text{ is } e_2^2 = 1 - \frac{25\cos^2\alpha}{25} = \sin^2\alpha \text{ ; put } e_1 = \sqrt{3} e_2 \Rightarrow e_1^2 = 3e_2^2$$


$$\Rightarrow 1 + \cos^2\alpha = 3\sin^2\alpha \Rightarrow 2 = 4\sin^2\alpha \Rightarrow \sin\alpha = \frac{1}{\sqrt{2}}$$

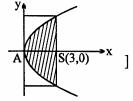
A [Hint. Maxima/minima occurs at  $=\left(-\frac{1}{a}, 3-\frac{1}{a}\right)$   $f(x)=ax^2+bx+c$  has a maxima or minima if  $x = -\frac{b}{2a}$  $h = -\frac{1}{3}$  and  $k = 3 - \frac{1}{3}$ ; eliminating 'a' we get  $\Rightarrow k = 3 + x$  Locus is  $y = x + 3 \Rightarrow (A)$ ]





Q. 6 B [Sol. AD = 
$$y = \frac{2bc}{b+c}\cos\frac{A}{2} = \frac{bx}{b+x}(as c = x)$$
  
but  $bx = 1 \Rightarrow b = \frac{1}{x}$   $\therefore y = \frac{x}{1+x^2} = \frac{1}{x+\frac{1}{x}}$ 




 $y_{max} = \frac{1}{2}$  since minimum value of the denominator is 2 if  $x > 0 \implies$ (B)]

Q. 7 B [Sol. put 
$$x = c \cos \theta$$
;  $y = c \sin \theta$   

$$\therefore E = x^4 + y^4 = c^4 (\sin^4 \theta + \cos^4 \theta) \Rightarrow c^4 (1 - 2\sin^2 \theta \cos^2 \theta)$$

$$= c^4 \left[ 1 - \frac{1}{2} \sin^2 2\theta \right] = E_{max} = \frac{c^4}{2} \text{ when } \sin^2 2\theta = 1]$$

Q. 8 B [Sol. 
$$\frac{2}{3}(12.3) = 24$$
 Ans.



Q. 9 A [Sol. 
$$\begin{vmatrix} 3u^2 & 2u^3 & 1 \\ 3v^2 & 2v^2 & 1 \\ 3w^2 & 2w^2 & 1 \end{vmatrix} = 0$$

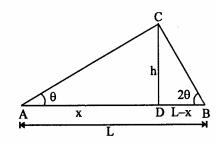
$$R_1 \Rightarrow R_1 - R_2$$
 and  $R_2 \Rightarrow R_2 - R_3$ 

$$\Rightarrow \begin{vmatrix} u^{2} - v^{2} & u^{3} - v^{3} & 0 \\ v^{2} - w^{2} & v^{3} - w^{3} & 0 \\ w^{2} & w^{3} & 1 \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} u + v & u^{2} + v^{2} + vu & 0 \\ v + w & v^{2} + w^{2} + vw & 0 \\ w^{2} & w^{3} & 1 \end{vmatrix} = 0$$

$$R_1 \rightarrow R_1 - R_2$$

$$\Rightarrow \begin{vmatrix} u - w & (u^2 - w^2) + v(u - w) & 0 \\ v + w & v^2 + w^2 + vw & 0 \\ w^2 & w^3 & 1 \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} 1 & u + w + v & 0 \\ v + w & v^2 + w^2 + vw & 0 \\ w^2 & w^3 & 1 \end{vmatrix} = 0$$

$$\Rightarrow (v^2 + w^2 + vw) - (v + w)[(v + w) + u] = 0$$


$$\Rightarrow v^2 + w^2 + vw = (v + w)^2 + u(v + w) \Rightarrow uv + vw + wu = 0$$
 **Ans.**]

$$uv + vw + wu = 0$$
 Ans.

Q. 10 B [Sol. CD=h; 
$$\tan \theta = \frac{h}{x}$$
;  $\tan 2\theta = \frac{h}{L-x}$ 

Now  $x \tan \theta = (L - x) \tan 2\theta \implies x (\tan \theta + \tan 2\theta) = L \tan 2\theta$ 

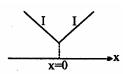
$$x = \left(\frac{\tan 2\theta}{\tan \theta + \tan 2\theta}\right)L \implies x = \left(\frac{2\theta \frac{\tan 2\theta}{2\theta}}{\theta \frac{\tan \theta}{\theta} + 2\theta \frac{\tan 2\theta}{2\theta}}\right)L$$



 $y=a^x$ ,  $a \in (0, 1)$ 

$$\lim_{\theta \to 0} x = \frac{2L}{3} \quad \text{Ans. ]}$$

[Sol. for  $0 < a \le 1$  the line Q. 11 B

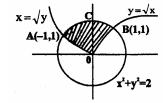

Always cuts  $y = a^x$ 

for a > 1 say a = e consider  $f(x) = e^x - x$ 

$$f'(x) = e^x - 1 \implies x \ f'(x) > 0 \text{ for } x > 0 \text{ and } f'(x) < 0 \text{ for } x < 0$$

$$\therefore$$
 f(x) is increasing  $(\uparrow)$  for  $x > 0$ 

and decreasing  $(\downarrow)$  for  $x < 0 \Rightarrow y = e^x$  always lies above y = x i.e.  $e^{x} - x \ge 1$  for a > 1 Hence never cuts  $= a = (0, 1] \Rightarrow (B)$ 




Q. 12 D [Hint. 
$$A = \int_{1}^{0} \left[ \sqrt{2 - x^2} - x^2 \right] dx + \int_{1}^{1} \left[ \sqrt{2 - x^2} - \sqrt{x} \right] dx = \frac{\pi}{2}$$

note that the area is equal to the sector AOB with central angle 90°

 $\Rightarrow$ 1/4 (the area of the circle)

required area  $\pi - \frac{\pi}{2} = \frac{\pi}{2}$  Ans.



Q. 13 D [Sol. 
$$A = \frac{(y_1^2 - 4ax_1)^{3/2}}{2a} = \frac{(4+4)^{3/2}}{2} = 8\sqrt{2}$$
 Ans. ]

Q. 14 A Q. 15 B

Q. 17 A [Hint. 
$$y = -(5/2)x + 5 \Rightarrow m = 2/5 \Rightarrow a^2m^2 - b^2 = 9.4/25 - 4 = (36-100)/25 < 0$$

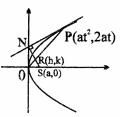
Note that the slope of the tangent (2/5) is less than the slope of the asymptote which is 2/3 which is not possible

[Sol. SS' = 2ae, where a and e are length of semi-major axis and eccentricity Q. 18 A respectively

$$\therefore \qquad \sqrt{(9-3)^2 + (12-4)^2} = 2ae \Rightarrow \qquad \therefore \qquad ae = 5 \Rightarrow \therefore \text{ centre is mid-point of SS'}$$

Centre =(6, 8), Let the equation of auxiliary circle be  $(x-6)^2 = (y-8)^2 = a^2$ 

We know that the foot of the perpendicular from the focus on any tangent lies on the auxiliary circle

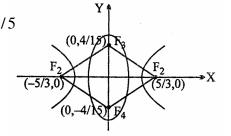

$$\therefore (1, -4) \text{ lies on auxiliary circle} \Rightarrow \text{i.e.} (1-6)^2 + (-4-8)^2 = a^2 \Rightarrow a = 13$$

 $ae = 5 \Rightarrow$ e = 5/13 Ans.]

Q. 19 B [Sol. 
$$T: ty = x + at^2$$
 ....(1)

Line perpendicular to (1) through (a, 0)

$$tx + y = ta \qquad \dots (2)$$

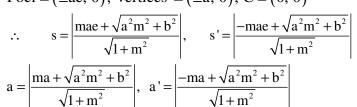


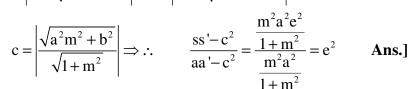

equation of OP: 
$$y - \frac{2}{t}x = 0$$
 ....(3)

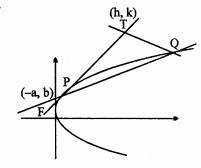
from (2)&(3) eliminating t we get locus]

**[Sol.** 1<sup>st</sup> is a hyperbola Q.20 B  $9(x-1)^2-16(y-1)^2=16$  with e=5/4and  $2^{nd}$  is an ellipse  $\Rightarrow 25(x-1)^2 + 9(y-1)^2 = 1$  with e = 4/5

with x-1=X and y-1=Y area  $=\frac{1}{2}d_1d_2=\frac{1}{2}\cdot\frac{10}{3}\cdot\frac{8}{15}=\frac{8}{9}$ 





Note that  $e_E.e_H = 1$ 


Q. 21 D [Sol. 
$$\frac{y^2}{1/16} - \frac{x^2}{1/9} = 1$$

Locus will be the auxiliary circle  $x^2 + y^2 = 1/16$ 

- [Sol. The point with slope 2 and 3 are normal at (4, -4); (9, -6) where there is no Q. 22 D curve, point of normal  $(am^2, -2am)$ ]
- [Sol.  $T: \frac{xx_1}{a^2} \frac{yy_1}{b^2}; \frac{x.ae}{a^2} \frac{y.b^2}{a.b^2} = 1$  or  $\frac{ex}{a} \frac{y}{a} = 1$  or Q. 23 B
- **[Sol.** Let the equation of tangent by  $y = mx + \sqrt{a^2m^2 + b^2}$ O. 24 D Foci  $\equiv$  ( $\pm$ ae, 0), vertices  $\equiv$  ( $\pm$ a, 0), C  $\equiv$  (0, 0)

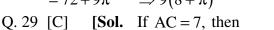






Q. 25 C [Hint. Chord of contact of 
$$(h, k) \Rightarrow ky = 2a(x+h)$$
. It passes through  $(-a, b) \Rightarrow bk = 2a(-a+h) \Rightarrow Locus$  is  $by = 2a(x-a)$ ]

Q. 26 A [Sol. 
$$e_1^2 = 1 + \frac{b^2}{a^2} = 1 + \frac{12}{4} = 4$$
  $\Rightarrow$   $e_1 = 2$  ; now  $\frac{1}{e_1^2} + \frac{1}{e_2^2} = 1$   $\frac{1}{e_2^2} = 1 - \frac{1}{4} = \frac{3}{4}$   $\Rightarrow$   $e_2^2 = \frac{4}{3}$   $\Rightarrow$   $e_2 = \frac{2}{\sqrt{3}}$ ]


Q. 27 B, D [Sol. for non tribial solution 
$$(4-p^2)(7-p^2)-4=0$$

$$p^4 - 11p^2 + 24 = 0$$
  $\Rightarrow$   $p^2 = 3$  or  $p^2 = 8$ 

if 
$$p^2 = 3$$
,  $x + 2y = 0 \implies \frac{x}{y} = -2$   $\implies$  (D)

if 
$$p^2 = 8$$
,  $-4x + 2y = 0 \Rightarrow \frac{x}{y} = \frac{1}{2}$   $\Rightarrow$  (B)

Q. 28 [A] [Sol. Area = 
$$3.(8.3) + 3.\frac{1}{2}r^2\theta \Rightarrow 72 + \frac{3}{2}.9.\frac{2\pi}{3}$$
  
=  $72 + 9\pi \Rightarrow 9(8 + \pi)$ 



$$\cos \alpha = \frac{8^2 + 5^2 - 7^2}{2.8.5} = \frac{64 + 25 - 49}{2.40}$$

Hence 
$$\cos \alpha = \frac{40}{2.40} = \frac{1}{2}$$
  $\Rightarrow$   $\alpha = 60^{\circ}$   
Now, AC < 7  $\Rightarrow$   $\alpha \in (0, 60^{\circ})$ 

Now, AC < 7 
$$\Rightarrow \alpha \in (0, 60^{\circ})$$

Hence 
$$p = \frac{60}{180} = \frac{1}{3} \implies [C]$$

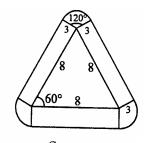


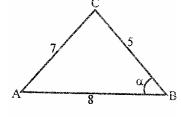
**Comprehesion Type** 

Q. 3 D [Sol. Let 
$$P(x, 1-2x)$$

Hence 
$$\begin{vmatrix} x & 1-2x & 1 \\ 1 & 3/2 & 1 \\ 4 & 5 & 1 \end{vmatrix} = 2$$
  
(1)  $|4-19x| = 4$  :  $x = 0$  (rejected)

(1) 
$$|4-19x|=4$$
  $\therefore$   $x = 0$  (rejected)  
 $19x-4=4$   $\Rightarrow$   $x = \frac{8}{10}$  Ans.


(2) Midpoint of AB is 
$$M\left(\frac{5}{2}, \frac{13}{4}\right)$$
;


 $m_{AB} = \frac{7}{6}$  Equation of perpendicular bisector

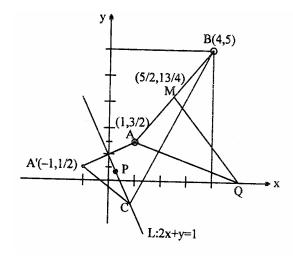

$$y - \frac{13}{4} = -\frac{6}{7} \left( x - \frac{5}{2} \right)$$
 put  $y = 0 \implies x = \frac{5}{2} + \frac{91}{24} = \frac{151}{24}$  Ans.

Image of A in the line L is A'(-1, 1/2)(3)

now AC + BC = A'C + BC 
$$\geq$$
 A'B =  $\sqrt{25 + \frac{81}{4}} = \frac{\sqrt{181}}{2}$  Ans.]







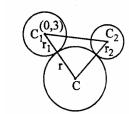
Q. 4 C Q. 5 A Q. 6 C [Sol. 
$$L_1: \frac{x-1}{-2} = \frac{y-0}{1} = \frac{z+1}{1}; L_2: \frac{x-4}{1} = \frac{y-5}{4} = \frac{z+2}{-1}$$

(i) 
$$\overrightarrow{V}_1 = -2\hat{i} + \hat{j} + \hat{k}; \qquad \overrightarrow{V}_2 = \hat{i} + 4\hat{j} - \hat{k}$$

$$\cos \theta = \left| \frac{-2 + 4 - 1}{\sqrt{6} \cdot \sqrt{18}} \right| = \frac{1}{6\sqrt{3}} \implies \theta = \cos^{-1} \left( \frac{1}{6\sqrt{3}} \right) \implies (C)$$

(ii) Equation of the plane containing the line  $L_2$  is

$$A(x-4)+B(y-5)+C(z+2)=0$$
 ...(1)


Where A + 4B - C = 0 since (1) is parallel to  $L_1$ 

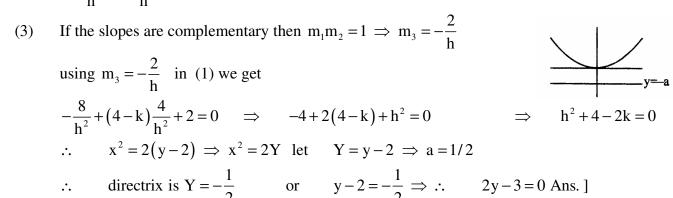
hence 
$$-2A + B + C = 0$$
  $\Rightarrow$   $\therefore$   $\frac{A}{4+1} = \frac{B}{2-1} = \frac{C}{1+8}$   $\Rightarrow$   $A = 5k; B = k; C = 9k$ 

Hence equation of plane  $P \Rightarrow 5(x-4)+y-5+9(z+2)=0 \Rightarrow 5x+y+9z-7=0$  (A)

(iii) distance between P and L<sub>1</sub> is 
$$d = \left| \frac{5 + 0 - 9 - 7}{\sqrt{25 + 1 + 81}} \right| = \frac{11}{\sqrt{107}}$$
 Ans.]

Q. 9 D [Sol. (iii) 
$$r_1 = 2$$
;  $r_2 = 1$ ;  $C_1 = (0, 3)$ ;  $C_2 = (6, 0)$ ;  $C_1C_2 = 3\sqrt{5}$  clearly the circle with centre  $C_1$  and  $C_2$  are separated  $CC_1 = r + r_1 \implies CC_2 = r + r_2 \implies CC_1 - CC_2 = r_1 - r_2 = constant$ ]




Q. 10 B Q. 11 B

[Sol. Equation of normal in terms of slope is Q. 12 A  $m^3x = (4-y)m^2 + 2 = 0$  point P(h, k) satisfies this equation

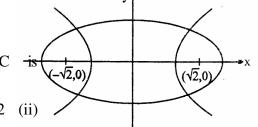
$$m^{2}h + (4-k)m^{2} + 2 = 0 \qquad m_{1} \\ m_{2} \\ m_{3} \qquad \dots (1)$$

(1) : algebraic sum of slopes is 
$$m_1 + m_2 + m_3 = \frac{k-4}{h}$$
 Ans.

(2) If two normals are perpendicular then 
$$m_1 m_2 = -1$$
 and  $m_1 m_2 m_3 = -\frac{2}{h}$  substituting  $m_3 = \frac{2}{h}$  in (1) we get 
$$\Rightarrow \frac{8}{h^2} + \frac{4(4-k)}{h^2} + 2 = 0 \Rightarrow 4 + 2(4-k) + h^2 = 0 \Rightarrow x^2 + 2(y-12) \therefore \text{ latus rectum} = 2 \text{ Ans.}$$



Q. 13 B


Q. 14 A

O. 15 A

[Sol.  $(1+y^2)dx = xydy \int \frac{dx}{x} = \int \frac{ydy}{1+y^2} 2 \ln x = \ln(1+y^2) + C$ 

given x = 1, y = 0  $\Rightarrow$  C = 0 hence equation of  $C = \frac{1}{\sqrt{1-\sqrt{2}}}$ 

 $x^2 - y^2 = 1$  which is rectangular hyperbola with eccentricity  $e = \sqrt{2}$ .



length of the latus rectum of rectangular hyperbola = 2a = 2 (ii) (i) Now for ellipse,

$$ae = \sqrt{2}$$
  $\Rightarrow$   $a^2e^2 = 2$   $\Rightarrow$   $a^2 \cdot \frac{2}{3} = 2$   $\Rightarrow$   $a^2 = 3$ 

and  $b^2 = a^2 (1 - e^2) = 3 (1 - \frac{2}{3}) = 1$ . Hence equation of ellipse is  $\frac{x^2}{3} + \frac{y^2}{1} = 1$  Ans.

Locus of the point of intersection of the perpendicular tangents is the director circle of the (ii) ellipse equation is  $x^2 + y^2 = 4$ .

O. 17 C Q. 16 B

[Sol. The parabolas will have their concavities in opposite direction otherwise they Q 18 D can not touch

Let 
$$P_1: x^2 = -\lambda(y-4)$$
 ....(1)  $(\lambda > 0)$ 

and 
$$P_2:(x-6)^2 = \lambda y$$
 ....(2)

Solving the two equation

$$x^{2} = -\lambda \left[ \frac{(x-6)^{2}}{\lambda} - 4 \right] \Rightarrow x^{2} = -(x-6)^{2} + 4\lambda$$

$$x^{2} + (x-6)^{2} - 4\lambda = 0 \Rightarrow 2x^{2} - 12x + 36 - 4\lambda = 0$$

$$b^2 - 4ac = 0$$
;  $144 = 4.2(36 - 4\lambda) \Rightarrow 18 = (36 - 4\lambda)$ 

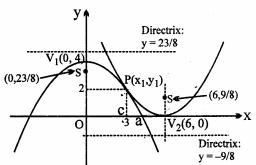
$$\Rightarrow 4\lambda = 18 \Rightarrow \lambda = \frac{9}{2}$$
 Hence the parabola are

$$x^{2} = -\frac{9}{2}(y-4)$$
;  $(x-6)^{2} = \frac{9}{2}y \Rightarrow Latus rectum = \frac{9}{2} Ans (ii)$ 

again,  $\frac{dy}{dx}\Big|_{P(x,y)}$  must be same for both

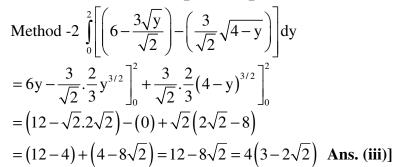
$$2x = -\lambda \frac{dy}{dx}$$
  $\Rightarrow$   $\frac{dy}{dx}\Big]_{x_1, y_1} = -\frac{2x_1}{\lambda} \text{ (where } \lambda = \frac{9}{2}\text{)}$ 

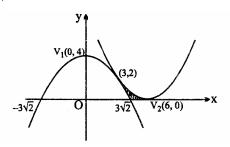
and 
$$2(x-6) = \lambda \frac{dy}{dx}$$
  $\Rightarrow$   $\frac{dy}{dx}\Big|_{x=x} = \frac{2(x_1-6)}{\lambda}$  (where  $\lambda = \frac{9}{2}$ )


$$\therefore 2(x_1 - 6) = -2x_1 \Rightarrow 4x_1 = 12 \Rightarrow x_1 = 3$$

when x = 3 then  $y_1 = 2$  : point of contact = (3, 2)  $\Rightarrow$ sum = 5 Ans. (i)

(iii) Mehtod - 1


$$A_1 = \int_3^6 \frac{2}{9} (x - 6)^2 dx = \frac{2}{9} \cdot \frac{(x - 6)^3}{3} \Big]_3^6 = \frac{2}{27} \Big[ 0 - (-3)^3 \Big] = 2 \quad (A_1 \equiv Ar.PCV)$$


$$A_2 = \int_{3}^{3\sqrt{2}} \left( 4 - \frac{2x^2}{9} \right) dx = 4x \cdot \frac{2}{27} x^3 \Big|_{3}^{3\sqrt{2}} = \left( 12\sqrt{2} - \frac{2.54\sqrt{2}}{27} \right) - \left( 12 - \frac{2}{27}.27 \right) \left( A_2 \equiv Ar. PCQ \right)$$



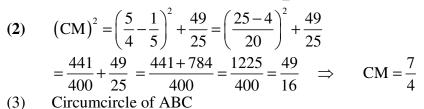
$$=(12\sqrt{2}-4\sqrt{2})-(12-2)=12\sqrt{2}-4\sqrt{2}-10=8\sqrt{2}-10$$

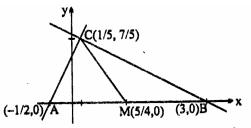
: required area = 
$$2 - \left[ 8\sqrt{2} - 10 \right] = 12 - 8\sqrt{2} = 4\left(3 - 2\sqrt{2}\right)$$
 Ans. (iii)





Q. 19 [C] Q. 20 [B] Q. 21 [A] [Sol. (1) 
$$a = b = c = 1; y = x^2 + x + 1 = 0 <_{w^2}^{w} \Rightarrow$$
 (C)


(2) 
$$\alpha^{2009} = w^{2009} = w^2 \implies \beta^{2009} = w^{4018} = w$$
  
hence equation is  $x^2 - (w + w^2)x + 1 = 0$   $x^2 + x + 1 \implies (B)$ 


Q. 22 [B] Q. 23 [C] Q. 24 [D] [Sol. (1) As line are perpendicular  

$$\therefore \quad a-2=0 \quad \Rightarrow \quad a=2 \quad \text{(coefficient of } x^2 + \text{ coefficient of } y^2=0)$$
using  $\Delta = 0 \quad \Rightarrow \quad c = -3 \left(D \equiv abc + 2fgh - af^2 - bg^2 - ch^2\right)$ 

hence the two lines are 
$$x + 2y - 3 = 0$$
 and  $2x - y + 1 = 0$ 

x-int ercepts 
$$y_1=3;$$
  $x_2=-1/2$   $\Rightarrow$   $x_1+x_2+y_1+y_2=5$  Ans.





$$\left(x + \frac{1}{2}\right)(x - 3) + y^2 = 0 \qquad \Rightarrow \qquad (2x + 1)(x - 3) + 2y^2 = 0$$

$$\Rightarrow 2(x^2 + y^2) - 5x - 3 = 0 \Rightarrow x^2 + y^2 - \frac{5}{2}x - \frac{3}{2} = 0 \qquad \dots (1)$$

Given  $x^2 + y^2 - 4y + k = 0$  which is orthogonal to (1) using the condition of orthogonality

we get, 
$$0+0=k-\frac{3}{2} \implies k=\frac{3}{2}$$
 Ans.]

Q. 25 D Q. 26 C Q. 27 A [Sol. Equation of tangent to 
$$y = f(x)$$
 at  $(x_i, y_i)$   $Y - y_i = m(X - x_i)$ 

[Sol. Equation of tangent to 
$$y = f(x)$$
 at  $(x_i, y_i)$   $Y - y_i = m(X - x_i)$ 

(i) put 
$$Y = 0$$
,  $X = x_i - \frac{y_i}{m} = x_{i+1} \Rightarrow x_{i+1} - x_i = -\frac{Y_i}{m}$ 

(ii) 
$$d = -\frac{y_i}{m}$$
  $\Rightarrow$   $m = -\frac{y_i}{d}(x_i y_i \text{ lies on the curve, d is the common difference of}$ 

A.P.) 
$$\frac{dy}{dx} = -\frac{y}{\log_2 e} = -y \ln 2$$
  $\Rightarrow \int \frac{dy}{y} = -\ln 2 \int dx$   $\Rightarrow \ln y = -x \ln 2 + C$ 

Curve passing through 
$$(0, 2) \Rightarrow C = \ln 2$$

:. 
$$\ln y = (1-x) \cdot \ln 2 = \ln 2^{1-x} \implies y = 2^{1-x} \text{ Ans.}$$

again if  $x_1, x_2, x_3, \dots, x_n$  in G.P. (ii)

Divide equation (1) by 
$$x_i \Rightarrow \frac{x_{i+1}}{x_i} - 1 = -\frac{y_i}{mx_i}$$

 $r-1 = -\frac{y}{x_i}$  (x<sub>i</sub>y<sub>i</sub> lies on curve, r is the common ratio of G.P.)

$$2-1 = -\frac{y}{mx}$$
  $\Rightarrow$   $m = -\frac{y}{x}$   $\Rightarrow$   $\frac{dy}{dx} = -\frac{y}{x}$   $\Rightarrow$   $\frac{dy}{y} + \frac{dx}{x} = 0$ 

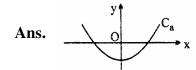
 $\ln xy = \ln c \implies xy = c$  as curve passes through  $(1, 2) \implies c = 2$ 

xy = 2 which is a rectangle hyperbola **Ans.** 

(iii) Equation of tangent at (1, 2) on xy = 2,

$$\frac{x}{x_1} + \frac{y}{y_1} = 2; \quad \frac{x}{1} + \frac{y}{2} = 2 \implies 2x + y = 4 \quad \dots (1)$$

circle touching (1) at (1, 2) is


$$(x-1)^{2} + (y-2)^{2} + \lambda(2x+y-4) = 0$$
 .....(2)

it passé through  $(1,0) \Rightarrow 4 + \lambda(2-4) = 0 \Rightarrow \lambda = 2$ 

$$x^{2} + y^{2} - 2x - 4y + 5 + 4x + 2y - 8 = 0 \implies x^{2} + y^{2} + 2x - 2y - 3 = 0$$

$$r^2 = 1 + 1 + 3 = 5$$
  $\Rightarrow$   $r = \sqrt{5}$  **Ans.**]

- Q. 30 B [Sol.  $y = f(x) = \frac{x^2}{4} ax + a^2 + a 2$ Q. 28 B
- (1) for zeroes to be on either side of origin f(0) < 0
  - $a^2 + a 2 < 0 \Rightarrow (a+2)(a-1) < 0 \Rightarrow -2 < a < 1 \Rightarrow 2 \text{ integers i.e. } \{-1, 0\} \Rightarrow (B)$
- Vertex of  $C_a$  is (2a, a-2)(2) Hence h = 2a and k = a - 2Hence h = 2a and k = a - 2 h = 2(k+2) Locus  $x = 2y+4 \implies x-2y-4=0$  Ans.



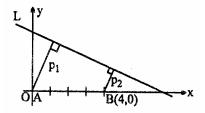
y = mx + c is a common tangent to  $y = \frac{x^2}{4} - 3x + 10$ (3)

....(10) (for 
$$a = 3$$
)

....(10) (for a = 3) and 
$$y = 2 - \frac{x^2}{4}$$
 ......(2) where  $m = m_1$  or  $m_2$  and  $c = c_1$  or  $c_2$ 

solving 
$$y = mx = c$$
 with (1)  $mx + c = \frac{x^2}{4} - 3x + 10$  or  $\frac{x^2}{4} - (m+3)x + 10 - c = 0$ 

D = 0 gives 
$$\Rightarrow (m+3)^2 = 10-c \Rightarrow c = 10-(m+3)^2 \dots (3)$$


IIIly 
$$mx + c = 2 - \frac{x^2}{4}$$
  $\Rightarrow$   $\frac{x^2}{4} + mx + c - 2 = 0 \Rightarrow D = 0$  gives

$$m^2 = c - 2$$
  $\Rightarrow$   $c = 2 + m^2$  .....(4)

From (3) and (4)

$$10 - (m+3)^2 = 2 + m^2 \Rightarrow 2m^2 + 6m + 1 = 0$$

$$\Rightarrow$$
  $m_1 + m_2 = -\frac{6}{2} = -3$  **Ans** ]



(1) Let 
$$A = (0, 0)$$
 and  $B = (4, 0)$ 

And the line be ax + by = 1

$$p_1 = \left| \frac{1}{\sqrt{a^2 + b^2}} \right|; \qquad p_2 = \left| \frac{4a - 1}{\sqrt{a^2 + b^2}} \right| \implies p_1 + 3p_2 = k$$

$$\left| \frac{1}{\sqrt{a^2 + b^2}} \right| + 3 \left| \frac{4a - 1}{\sqrt{a^2 + b^2}} \right| = k$$

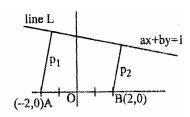
now (0,0) and (4,0) must give the same sign i.e. -ve with the line L(4a-1<0)

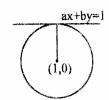
$$\therefore \frac{1}{\sqrt{a^2 + b^2}} + \frac{3(1 - 4a)}{\sqrt{a^2 + b^2}} = k \implies \left| \frac{4(1 - 3a)}{\sqrt{a^2 + b^2}} \right| = k; \quad \left| \frac{3a - 1}{\sqrt{a^2 + b^2}} \right| = \frac{k}{4}$$

hence centre of the fixed circle is (3,0) which lies on the line segment

$$AB \Rightarrow (A)$$

(2) If 
$$k = 4 \implies r = 1$$
 Ans.


(3) 
$$p_1 = \left| \frac{-2a - 1}{\sqrt{a^2 + b^2}} \right|; \quad p_2 = \left| \frac{2a - 1}{\sqrt{a^2 + b^2}} \right|$$


hence with the same argument, 2a-1<0

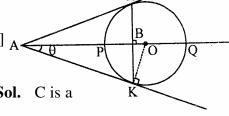
and 
$$-2a-1 < 0$$
 :  $p_1 + 3p_2 = k$ 

$$\frac{1+2a}{\sqrt{a^2+b^2}} + \frac{3(1-2a)}{\sqrt{a^2+b^2}} = k \implies \frac{4(1-a)}{\sqrt{a^2+b^2}} = k$$

$$\frac{|a-1|}{\sqrt{a^2+b^2}} = \frac{k}{4} \text{ hence center is (1, 0)} \text{ Ans.}$$



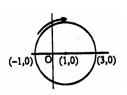



# Assertion & Reason Type

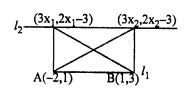
Q. 1 A Q. 2 A [Sol. 
$$\frac{(AK)}{(OA)} = \cos \theta = \frac{AB}{AK}$$

$$\Rightarrow (AK)^2 = (AB)(OA) = (AP)(AQ) [AK^2 = AP.AQ \text{ using power of point A}]$$

Also 
$$OA = \frac{AP + AQ}{2}$$
  $[AQ - AO = r = AO - AP \Rightarrow 2AO = AQ + QP]$ 


$$\Rightarrow (AP)(AQ) = AB\left(\frac{AP + AQ}{2}\right) \Rightarrow AB = \frac{2(AP)(AQ)}{(AP + AQ)}$$

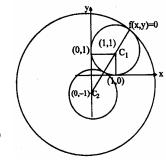



Q. 3 C [Hint. angle of intersection is  $\tan^{-1}\left(\frac{3}{4}\right)$ ] Q. 4 [A] [Sol. C is a

circle with centre (+1, 0) and radius

$$2(x-1)^2 + y^2 = 4$$




Q. 5 A [Sol. 
$$m_{l_1} = \frac{2}{3}$$
  
 $m_{l_2} = \frac{2(x_2 - x_1)}{3(x_2 - x_1)} = \frac{2}{3}$ 



$$A = \frac{1}{2} \begin{vmatrix} -2 & 1 & 1 \\ 1 & 3 & 1 \\ 3x & (2x-1) & 1 \end{vmatrix} = 8$$

## **More than One Correct Type**

Q. 1 C, D [Sol. f(x, y) = 0 will have centre at (1, 1) and radius unity  $= (x-1)^{2} + (y-1)^{2} = 1 \quad C_{1}C_{2} = \sqrt{5}$ Hence radius r of g(x, y) = 0 is  $\left(\begin{array}{c} \text{see figur, one circle external} \\ \text{and other internlly tangent} \end{array}\right)$  $\sqrt{5} + 1$  and  $\sqrt{5} - 1 \Rightarrow$ 



B, D [Sol. Required line is passing through  $P(\alpha)$  and parallel to the vector OQ Hence  $z = \alpha + i\lambda a$ ,  $\lambda \in R$ 

$$\frac{z-\alpha}{\alpha}$$
 = purely imaginary  $\Rightarrow$   $\operatorname{Re}\left(\frac{z-\alpha}{\alpha}\right) = 0 \Rightarrow (\mathbf{B})$ 

$$Q \stackrel{i\alpha}{\longrightarrow} P(\alpha)$$
 line

$$\Rightarrow \operatorname{Re}\left((z-\alpha)\overline{\alpha}\right) = 0 \Rightarrow \operatorname{Re}\left(z\overline{\alpha} - |\overline{\alpha}|\right) = 0$$

Also 
$$\frac{z-\alpha}{\alpha} + \frac{\overline{z}-\overline{\alpha}}{\overline{\alpha}} = 0$$

$$\Rightarrow \overline{\alpha}(z-\alpha) + \alpha(\overline{z}-\overline{\alpha}) = 0 \Rightarrow \overline{\alpha}z + \alpha\overline{z} - 2|\alpha|^2 = 0 \Rightarrow (\mathbf{D})$$

## **Match Matrix Type**

Q. 1 (A) Q; (B) S; (C) P

[Sol. (A) 
$$C_1$$
:  $x^2 - 3y + 2x + 3 = 0 \implies (x+1)^2 = 1 - 3 + 2y = 3x - 2 = 3\left(y - \frac{2}{3}\right)$  Hence  $L_1L_2 = 3$  Ans.

(B) 
$$C_2: 4x^2 + y^2 - 16x + 6y + 21 = 0 \Rightarrow 4(x^2 - 4x) + (y+3)^2 + 21 - 9 = 0$$
  
 $4[(x-2)^2 - 4] + (y+3)^3 + 12 = 0 \Rightarrow 4(x-2)^2 + (y+3)^2 = 4$   
 $(x-2)^2 + \frac{(y+3)^2}{4} = 1$  Let  $x-2 = X$ ;  $y+3 = Y$   
 $X^2 + \frac{Y^2}{4} = 1 \Rightarrow L_1L_2 = \frac{2b^2}{a} = \frac{2.1}{2}$  (b=1, a=2)  $\Rightarrow L_1L_2 = 1$ 

(C) 
$$C_3: x^2 - 4y^2 - 2x - 32y - 127 = 0 \Rightarrow \left[ (x - 1)^2 - 1 \right] - 4 \left[ (y + 4)^2 - 16 \right] - 127 = 0$$

$$\frac{(x - 1)^2}{64} - \frac{(y + 4)^2}{16} = 1 \text{ Let } x - 1 = X; y + 4 = Y \Rightarrow \frac{X^2}{64} - \frac{Y^2}{16} = 1 \Rightarrow L_1 L_2 = \frac{2.16}{8} = 4$$